
ÉNS de Lyon M1 – Spectral Theory TD01

TD 1: Bounded operators

Notation: we use the notationLp(X) = Lp(X,C) for the Lebesgue space of complex valued functions, andC0(X) = C0(X,C)
for continuous functions. L(E,F ) denotes the set of linear operators from E to F and B(E,F ) the set of bounded operators.
WhenE = F , we will just write L(E) or B(E). The space of power p summable sequences of complex number is denoted by ℓp.

Exercise 1 – Operator norm and adjoint. Let E, F and G be Banach spaces, A ∈ L(E,F ) and B ∈ L(F,G).

1. Assume A and B are bounded. Prove that BA ∈ B(E,G) and ∥BA∥ ≤ ∥B∥ ∥A∥.

2. Prove that A is bounded if and only if it is continuous.

3. Using the Hahn–Banach theorem, prove that for any x ∈ E,

∥x∥E = sup
y∈E′

∥y∥≤1

|⟨x, y⟩| .

4. If A ∈ B(E,F ), prove that one can define its adjoint A∗ ∈ B(F ′, E′) by

⟨x,A∗y⟩ := ⟨Ax, y⟩ .

Exercise 2 – Almost invertible operators. Give explicit examples of bounded operators A and B on ℓ2 such that AB = Idℓ2 and
BA is the projection onto a closed infinite-dimensional subspace of infinite codimension.

Exercise 3 – Weighted shift. We denote by (en)n∈N∗ the standard Hilbert basis of ℓ2 and e0 = 0 ∈ ℓ2. Let a = (an)n∈N ∈ ℓ∞.

1. Show that there is a unique bounded operator A on ℓ2 such that for any n ∈ N∗, Aen = an en+1 and a unique bounded
operator B on ℓ2 such that for any n ∈ N∗, Ben = an en−1. Compute their operator norms and adjoint.

2. Find the eigenvalues of A and B, that is for λ ∈ R, solve the equations Au = λu and Bu = λu.

3. For the two operators above with an = 1 for all n ∈ N, compute AB and BA and deduce that A is injective but not
surjective, B is surjective but not injective.

4. Assuming that an → 0 as n → ∞, show that lim
n→∞

∥An∥1/n = 0.

Exercise 4 – Multiplication operators. To any function u ∈ L∞(R), we associate the operator Mu defined for ψ ∈ L2(R) by

Muψ(x) = u(x)ψ(x) .

1. Prove that u is a bounded operator and compute its operator norm and its adjoint.

2. Assume u is a real-valued strictly increasing function. Then prove that for any λ ∈ C, the equation Muψ = λψ has no
solution.

Exercise 5 – Differential operator. Recall that for n ∈ N, one can define H2(Rd) as the space of functions such that the norm

∥u∥H2 :=
(

∥u∥2
L2 +

∥∥∇2u
∥∥2

L2

)1/2

is finite. Here ∇2u denotes the Hessian of u.

1. Prove that A := 1 − ∆ ∈ B(H2(Rd), L2(Rd)). Find its operator norm and its adjoint.

2. Prove that A is invertible.

Exercise 6 – Integral operators. Let K ⊆ Rd be compact and a ∈ C0(K2) and define A ∈ L(L1(K), C0(K)) for any
ψ ∈ L1(K) by

Aψ(x) =
∫

K

a(x, y)ψ(y) dy.

1. Prove that A is well-defined, A ∈ B(L1(K), C0(K)).

2. Prove that the image of a bounded set of C0(K) by A is a compact set of C0(K).

3. Prove that if a ∈ L2(K) with K possibly unbounded, then the above expression also defines an operator A ∈ B(L2(K)).
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TD 2: Banach algebra and spectrum

Exercise 1 – Banach Algebra.

1. If E is a Banach space, prove that B(E) is a Banach algebra.

2. Let A be a K-algebra that is also a Banach space for some norm N : A → R+. Prove that if the
multiplication is continuous, then there exists a norm ∥·∥ such that A is a Banach algebra.

3. Let F(L1) = { f ∈ D′(R) : f̂ ∈ L1(R) }. Is F(L1) a Banach algebra for the usual multiplication of
functions? Same question with F(M) where M denotes the set of finite measures on R.

Exercise 2 – Inversion and connected sets. Let A be a Banach algebra.

1. Prove that A× is an open set and a topological group.

2. Show that for every element x ∈ A satisfying ∥x∥ < 1, there is a continuous function f : [0, 1] → A×

such that f(0) = 1 and f(1) = (1 − x)−1.

3. Show that for every element x ∈ A×, there is an ε > 0 with the following property: for every element
y ∈ A× satisfying ∥y − x∥ ≤ ε, there is an arc in A× connecting y to x.

4. Prove that an open subgroup of A× is always closed.

5. Let G be the set of all finite products of elements of A× of the form 1 − x or (1 − x)−1, where x ∈ A
satisfies ∥x∥ < 1. Show that G is the connected component of 1 in A×.

Exercise 3 – Spectrum of functions. Let X be a compact Hausdorff space and let A = C0(X) be the Banach
algebra of all complex-valued continuous functions on X . If f ∈ C0(X), what is its spectrum?

Exercise 4 – Multiplication operator. Let Ω ⊆ R be a compact set andMx be the operator defined for functions
ψ ∈ L2(Ω) by

Mxψ(x) = xψ(x) .

Find the spectrum of Mx.

Exercise 5 – Volterra equation of the second kind. Let k ∈ C0([0, 1]2) and define K ∈ B(C0([0, 1])) for any
f ∈ C0([0, 1]) by

Kf(x) =
∫ x

0
k(x, y) f(y) dy .

1. Prove that for any n ∈ N, Kn ∈ B(C0(Ω)) and there exists a constant c > 0 such that for any n ∈ N,

∥Kn∥ ≤ cn

n! .

2. Show that for every complex number λ ̸= 0 and every g ∈ C0([0, 1]), the equation Kf = λf + g has a
unique solution f ∈ C0([0, 1]).

Exercise 6 – Differential operator. What is the spectrum of the operator (1 − ∆)−1 seen as a bounded operator
on L2(Rd)?
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TD 3: Spectral radius and decomposition of the spectrum

Exercise 1 – Volterra equation of the second kind. Let k ∈ C0([0, 1]2) and define K ∈ B(C0([0, 1])) for any
f ∈ C0([0, 1]) by

Kf(x) =
∫ x

0
k(x, y) f(y) dy .

1. Prove that for any n ∈ N, Kn ∈ B(C0(Ω)) and there exists a constant c > 0 such that for any n ∈ N,

∥Kn∥ ≤ cn

n! .

2. Deduce that the spectral radius is different from the operator norm.

3. Show that for every complex number λ ̸= 0 and every g ∈ C0([0, 1]), the equation Kf = λf + g has a
unique solution f ∈ C0([0, 1]).

Exercise 2 – Spectral radius inequalities. Let A be a complex Banach algebra and a ∈ A.

1. Prove that
r(a) ≤ inf

b∈A×
∥b−1a b∥ .

2. Assume a and b have their spectral radius equal to their operator norm. Prove that

r(a+ b) ≤ r(a) + r(b).

Exercise 3 – Nilpotent operators. LetA be a complex Banach algebra and a and b be two commuting nilpotent.
Prove that a+ b is nilpotent. Is it still true if a and b do not commute?

Exercise 4 – Shift operator. Let τl, τr ∈ B(ℓ2) be defined by

τl(x1, . . . , xn, . . . ) = (x2, . . . , xn, . . . )
τr(x1, . . . , xn, . . . ) = (0, x1, x2, . . . , xn, . . . ) .

1. What is their adjoint and spectral radius?

2. Compute the different parts of the spectrum σp, σa and σr of τl.

3. Compute the different parts of the spectrum σp, σa and σr of τr.

Exercise 5 – Multiplication operator. Let (X,µ) be a probability space, f ∈ L∞(X,µ) andMf be the operator
defined for functions ψ ∈ L2(X,µ) by

Mfψ(x) = f(x)ψ(x) .

Prove that

• σp(Mf ) = { z ∈ C : µ(f−1({ z })) > 0 }

• σa(Mf ) = { z ∈ C : ∀ε > 0, µ(f−1({Bε(z) })) > 0 }

• σr(Mf ) = ∅ .

Exercise 6 – Differential operator. What are the different parts of the spectrum of the operator (1 − ∆)−1 seen
as a bounded operator on L2(Rd)?
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TD 4: Normal operators, adjoints, and inequalities

We denote by H a complex Hilbert space.

Exercise 1 – Adjoint. Let ∗ denote the adjoint operation on B(H).

1. Prove that ∗ is an involution of the complex Banach algebra B(H) (that is for any A, B ∈ B(H),
(AB)∗ = B∗A∗, A∗∗ = A, and (aA + bB)∗ = aA∗ + bB∗ for any (a, b) ∈ C2) such that for any
A ∈ B(A), invertible (A−1)∗ = (A∗)−1.

2. Prove that ∗ is continuous for the operator norm topology and the weak operator topology (that is ∀x ∈ H ,
Anx → Ax weakly implies A∗

nx → A∗x weakly) but not for the strong operator topology (that is ∀x ∈ H ,
Anx → Ax strongly does not imply A∗

nx → A∗x strongly).

3. Give an example of a normal operator different from 1 and a non-normal operator.

Exercise 2 – Quadratic form. To every operator A ∈ B(H), one can associate a quadratic form qA : H → C
defined by qA(x) = ⟨Ax, x⟩. The numerical radius of A is defined by

w(A) = sup
x∈H,|x|=1

|qA(x)| .

1. Show that A is self-adjoint if and only if qA is real-valued.

2. Show that w(A) ≤ ∥A∥ ≤ 2 w(A).

3. Show that qA = qB if and only if A = B.

Exercise 3 – Spectral Radius of normal operators. Let A ∈ B(H).

1. Prove that ∥A∗A∥ = ∥A∥2.

2. Prove that if A is normal, then ∥A∥ = r(A).

Exercise 4 – Square root. Let A ∈ B(H) verify A ≥ 0.

1. Prove that there exists an operator B ∈ B(H) such that B ≥ 0, B2 = A and B commutes with every
operator that commutes with A.

2. Prove that there exists a unique operator B ∈ B(H) such that B ≥ 0, B2 = A.

We denote by
√

A the operator B defined in this way.

Exercise 5 – Inequalities for normal operators. If A ∈ B(H), we define |A| :=
√

A∗A. Let A and B be two
normal operators on B(H).

1. Prove that for any (m, n, p, q) ∈ N4,
∥∥Am+nBp+q

∥∥ ≤ ∥|A|m |B|p∥ ∥|A|n |B|q∥.

2. Prove that for any integers k ≤ n, ∥AkBk∥ ≤ ∥|A|n |B|n∥k/n. Hint: start with the case where k and n
are powers of 2.

3. If A is invertible and 0 ≤ A ≤ B (meaning B − A ≥ 0) prove that
√

A ≤
√

B.

4. Remove the hypothesis of invertibility of A.

Département de mathématiques 2023/2024 Page 1 sur 1



ÉNS de Lyon M1 – Spectral Theory TD05

TD 5: Compact operators

Let E, F and G be Banach spaces and H be an Hilbert space. We denote by K(E,F ) the space of compact
operators from E to F .

Exercise 1 – Properties of compact operators. 1. Let A ∈ L(E,F ). Prove that if A compact, then A is
bounded, and that the converse is true if E or F is finite dimensional.

2. Let A ∈ B(F,G) and B ∈ B(E,F ). Prove that AB is compact if A or B is compact. Is the converse
true?

3. Prove that if K ∈ K(E,F ), then it maps weakly converging sequences to strongly convergent ones, that
is if (xn)n∈N is a sequence converging weakly in E, then Kxn converges strongly in F .

4. IfE is reflexive, prove thatK ∈ K(E,F ) iff it maps weakly converging sequences to strongly convergent
ones.

5. LetH be an infinite dimensional Hilbert space, andK ∈ B(H) be a compact operator. Show that for any
orthonormal family (en)n∈N of vectors of H ,

lim
n→∞

∥Ken∥ = 0 .

6. Let (en)n∈N be an orthonormal basis of H , Qn := 1 − Pn where Pn is the orthogonal projection on
span(e1, . . . , en) and A ∈ B(H). Prove that

A is compact ⇐⇒ ∥QnAQn∥ →
n→∞

0 .

Exercise 2 – Hilbert–Schmidt integral operators. Let H = L2(Rd,C) and k ∈ L2(R2d,C) and define
K ∈ B(L2) by

∀ψ ∈ H, Kψ(x) =
∫
Rd
k(x, y)ψ(y) dy .

The function k is called the integral kernel of K.

1. Prove that ∥K∥ ≤ ∥k∥L2 and that the adjoint of K is an integral operator with integral kernel k(x, y).

2. Prove that K is a compact operator. Hint: use the fact that L2(Rd,C) is a separable Hilbert space and
the compactness of finite rank operators.

Exercise 3 – Let A = u(x) (1 − ∆)−1 ∈ L(L2(R)) with u ∈ L2(R). Prove that A is compact.

Exercise 4 – Let A ∈ B(E,F ) and BE denote the unit ball of E.

1. Prove that if E is reflexive, then A(BE) is closed.

2. Prove that if E is reflexive and A is compact, then A(BE) is compact.

3. Let E = F = C0[0, 1] and Au(x) =
∫ x

0 u(t) dt. Prove that A is compact but A(BE) is not closed.

Exercise 5 – Let 1 ≤ p ≤ q ≤ ∞ and Ω ⊂ Rd be a bounded open set. Prove that the injection Lq(Ω) → Lp(Ω)
is bounded but not compact. Hint: strong oscillations ...
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TD 6 - Compact and Hilbert–Schmidt operators

Let H be a complex Hilbert space. We denote by L2(H) the set of Hilbert–Schmidt operators on H .

Exercise 1 – Prove that the space L2(H) is a Hilbert space.

Exercise 2 – Hilbert–Schmidt integral operators. Let H = L2(Rd,C) and k ∈ L2(R2d,C) and define
K ∈ B(H) by

∀ψ ∈ H, Kψ(x) =
∫
Rd
k(x, y)ψ(y) dy .

The function k is called the integral kernel of K.

1. Prove that ∥K∥ ≤ ∥k∥L2 and that the adjoint of K is an integral operator with integral kernel
k(x, y).

2. Prove that K ∈ L2(H).

3. Conversely, prove that if A ∈ L2(H) then A is a Hilbert–Schmidt integral operator.

Exercise 3 – Your favorite operator. Let A = u(x) (1 − ∆)−1 ∈ L(H) with u ∈ L2(Rd) and H =
L2(Rd,C).

1. If d = 1, prove that A is a Hilbert–Schmidt operator.

2. If d ≥ 1 and u ∈ (L2 ∩ L∞)(Rd), prove that A ∈ K(H).

Exercise 4 – Let T ∈ B(H).

1. Prove that T is compact iff T ∗T is compact.

2. Let n ∈ N∗ and assume T is normal. Prove that T is compact iff Tn is compact. Is is still true if
T is not normal?

Exercise 5 – Let B ∈ L2(H) be self-adjoint and A ∈ B(H).

1. Prove that ∥∥∥|AB|2
∥∥∥

2
≤

∥∥∥|A|2B2
∥∥∥

2
.

2. Prove that for any n ∈ N which is a power of 2,

∥|AB|n∥2 ≤ ∥|A|nBn∥2 .
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TD 6 - Compact and trace class operators

Let H be a complex Hilbert space. We denote by L2(H) the set of Hilbert–Schmidt operators on H .

Exercise 1 – Let T ∈ B(H).

1. Prove that T is compact iff T ∗T is compact.

2. Let n ∈ N∗ and assume T is normal. Prove that T is compact iff T n is compact. Is is still true if T is not
normal?

Exercise 2 – Trace of positive operators. If (en)n∈N is an Hilbert basis of H and A ∈ B(H) is a positive
operator, one can define its trace Tr(A) ∈ [0, +∞] as

Tr(A) :=
∞∑

n=1
⟨Aen, en⟩ . (1)

1. Prove that the above definition is independent of the basis.

2. Prove that for any T ∈ B(H), Tr(T ∗T ) = Tr(TT ∗) and this quantity is finite iff T ∈ L2(H).

Exercise 3 – Cyclicity of the trace. If A ∈ B(H), then we define the set of trace class operators as

L1(H) = span { A ∈ B(H) : A ≥ 0 and Tr(A) < ∞ } .

1. Prove that any A ∈ L1(H) can be written as a linear combination of four positive operators with finite
trace.

2. Prove that if A ∈ L1(H), then the series (1) makes sense and is absolutely convergent. It defines the trace
on L1(H).

3. Let A, B ∈ L2(H). Prove that AB ∈ L1(H) and Tr(AB) = Tr(BA).

4. Let A ∈ K(H) be normal and B ∈ B(H). Prove that Tr(AB) = Tr(BA) remains true if AB ∈ L1(H).
Prove that this is in particular the case if A ∈ L1(H).

5. If A, B ∈ B(H), is it always true that Tr([A, B]) = 0?

Exercise 4 – Trace of normal operators. Let A ∈ K(H) be normal.

1. Prove that A ∈ L2(H) iff the sequence of its eigenvalues (λj(A))j∈N (counted with multiplicity) is in ℓ2,
and that in this case

∥A∥2
2 = Tr

(
|A|2

)
=

∑
j∈N

|λj |2 .

2. Prove that A ∈ L1(H) iff (λj(A))j∈N ∈ ℓ1, and that in this case

Tr(A) =
∑
j∈N

λj(A) .

3. Let A ∈ L1(L2(Rd)) be a normal integral operator with kernel A(x, y) ∈ C0(R2d). Prove that A(x, x) ∈
L1(Rd) and

Tr(A) =
∫
Rd

A(x, x) dx .

Conversely, if A(x, y) ∈ C0(R2d) is such that A ≥ 0 and A(x, x) ∈ L1(Rd), prove that A ∈ L1(L2(Rd)).
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TD 8 - Polar decomposition and functional Calculus

Let H be a complex Hilbert space. We denote by L2(H) the set of Hilbert–Schmidt operators on H and by
L1(H) the set of trace class operators.

Exercise 1 – Polar decomposition. Recall that if A ∈ B(H), then one can define |A| :=
√
A∗A.

1. Prove that it is not always possible to write A = U |A| for some unitary operator U .

2. Prove that there is a unique operator U ∈ B(H) such that A = U |A| and kerU = kerA, and that it is an
isometry from (kerU)⊥ to ranU . Define U on ran |A| first.

3. Prove that U∗ is an isometry from ranU to (kerU)⊥ and |A| = U∗A.

Exercise 2 – Trace class operators. 1. Prove that

L1(H) = {A ∈ B(H) : Tr(|A|) < ∞ } .

2. Prove that if A ∈ B(H) and B ∈ L1(H), then

|Tr(AB)| ≤ ∥A∥ Tr(|B|) .

3. Prove that ∥A∥L1 := Tr(|A|) is a norm on L1.

Exercise 3 – Compact operators and functional calculus. Let A ∈ K(H) be self-adjoint.

1. Prove that if f ∈ C0(σ(A)) is such that f(0) = 0, then f(A) is compact.

2. Prove that in this case
f(A) =

∑
λ∈σ(A)

f(λ)Pλ .

Exercise 4 – Singular value decomposition.

1. Prove that for any compact operator A, there exists a non-increasing sequence of positive numbers
(µj(A))j∈N and two orthonormal sets (ϕj)j∈N and (ψj)j∈N such that

A =
∑
j∈N

µj(A) ⟨ϕj , ·⟩ψj .

2. Prove that the µj(A) are unique and deduce that µj(A) = µj(A∗).

3. if A is a compact operator, prove that

Tr(|A|p) =
∑
j∈N

µj(A)p .

Exercise 5 – Let A,B be two positive operators such that Ap and Bq are trace class, with 1 < q ≤ 2 ≤ p < ∞
and p = q′.

1. Show that if ψn is an orthonormal basis of eigenvectors of B associated to the eigenvalues λn, then

⟨|AB|ψn, ψn⟩ ≤ λn ⟨Apψn, ψn⟩1/p .

2. Prove that
Tr(|AB|) ≤ Tr(Ap)1/p Tr(Bq)1/q .
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TD 9 - Functional calculus

Let H be a complex Hilbert space.

Exercise 1 – Compact operators and functional calculus. Let A ∈ K(H) be self-adjoint.
1. Prove that if f ∈ C0(σ(A)) is such that f(0) = 0, then f(A) is compact.

2. Prove that in this case
f(A) =

∑
λ∈σ(A)

f(λ)Pλ .

Exercise 2 – Decomposition of compact operators.
1. Prove that for any compact operator A, there exists a non-increasing sequence of positive numbers

(µj(A))j∈N and two orthonormal sets (ϕj)j∈N and (ψj)j∈N such that

A =
∑
j∈N

µj(A) ⟨ϕj , ·⟩ψj .

2. Prove that the µj(A) are unique and deduce that µj(A) = µj(A∗).

3. if A is a compact operator, prove that

Tr(|A|p) =
∑
j∈N

µj(A)p.

Exercise 3 – Functional calculus of bounded operators.
1. Prove that two bounded normal operators commute iff their spectral projections commute.

2. Let f ∈ C0(C) and (An)n∈N be a sequence of normal bounded operators that converges in norm to an
operator A. Show that f(An) converges in norm to f(A).

Exercise 4 – Schur Lemma. Let S ⊆ B(H) be such that S∗ = S. We want to prove that the two following
assertions are equivalent.

(i) The only closed subspaces invariants by S are { 0 } and H .

(ii) If A ∈ B(H) is such that ∀B ∈ S,AB = BA, then A ∈ C Id.

1. Prove that (ii) implies (i).

2. Assume (i). Prove by contradiction that (ii) holds if A is self-adjoint.

3. Prove that (i) and (ii) are equivalent.

Exercise 5 – Von Neumann Ergodic Theorem. Let U be a unitary operator on H (i.e. a normal isometry) and
P be the orthogonal projection on ker(1 − U). Prove that for any ψ ∈ H ,

1
n

n−1∑
k=0

Ukψ →
n→∞

Pψ .

Let (Ω, µ) a probability space and T a measure preserving bĳection on Ω such that for any E ⊆ Ω,
µ(E△T (E)) = 0 =⇒ µ(E) ∈ { 0, 1 }. Then prove that for any f ∈ L2(Ω),

1
n

n−1∑
k=0

f ◦ T k →
n→∞

∫
f(x)µ(dx) in L2(Ω) .
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TD 10 - Functional calculus and Gelfand transform

Let H be a complex Hilbert space.

Exercise 1 – Schur Lemma. Let S ⊆ B(H) be such that S∗ = S. We want to prove that the two following
assertions are equivalent.

(i) The only closed subspaces invariants by S are { 0 } and H .

(ii) If A ∈ B(H) is such that ∀B ∈ S,AB = BA, then A ∈ C Id.

1. Prove that (ii) implies (i).

2. Assume (i). Prove by contradiction that (ii) holds if A is self-adjoint.

3. Prove that (i) and (ii) are equivalent.

Exercise 2 – Von Neumann Ergodic Theorem. Let U be a unitary operator on H (i.e. a normal isometry) and
P be the orthogonal projection on ker(1 − U). Prove that for any ψ ∈ H ,

1
n

n−1∑
k=0

Ukψ →
n→∞

Pψ .

Let (Ω, µ) a probability space and T a measure preserving bĳection on Ω such that for any E ⊆ Ω,
µ(E△T (E)) = 0 =⇒ µ(E) ∈ { 0, 1 }. Then prove that for any f ∈ L2(Ω),

1
n

n−1∑
k=0

f ◦ T k →
n→∞

∫
f(x)µ(dx) in L2(Ω) .

Exercise 3 – Wiener Algebra. Let A = ℓ1(Z) with multiplication given by the convolution, that is (a ∗ b)n =∑
k∈Z ak bn−k. For any n ∈ Z, we denote by δn the sequence such that for k ∈ Z, (δn)k = δn,k is 1 if k = n

and 0 else.
1. Prove that A is a Banach algebra. What is its unit sequence? If n,m ∈ Z, what is the action of the

operator δn ∗ ·, and what is δn ∗ δm?

2. Prove that for any λ ∈ U := {λ ∈ C : |λ| = 1 },

ωλ :=

a 7→
∑
n∈Z

an λ
n

 ∈ σ(A) .

3. Conversely, prove that if ω ∈ σ(A), then it can be written in the above form.

4. Deduce that σ(A) is homeomorphic to U and that one can identify the Gelfand transform with a discrete
Fourier transform.

5. Let W be the set of continuous 2π-periodic functions whose Fourier series converges absolutely. Prove
that if f has no zeros, then 1/f ∈ W .

Exercise 4 – Let A = C0(X) for some compact Hausdorff space X .
1. Prove that for any proper ideal I ⊂ A there exists x ∈ X such that ∀f ∈ I, f(x) = 0.

2. Prove that I is maximal iff the above property is true for exactly one x ∈ X .

3. Show that there is a bĳection between the set of compact subsets of X and the set of closed ideals of
C0(X).
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TD 11 - Gelfand transform and Commutant

Let H be a complex Hilbert space.

Exercise 1 – Wiener Algebra. Let A = ℓ1(Z) with multiplication given by the convolution, that is (a ∗ b)n =∑
k∈Z ak bn−k. For any n ∈ Z, we denote by δn the sequence such that for k ∈ Z, (δn)k = δn,k is 1 if k = n

and 0 else.

1. Prove that A is a Banach algebra. What is its unit sequence? If n,m ∈ Z, what is the action of the
operator δn ∗ ·, and what is δn ∗ δm?

2. Prove that for any λ ∈ U := {λ ∈ C : |λ| = 1 },

ωλ :=

a 7→
∑
n∈Z

an λ
n

 ∈ σ(A) .

3. Conversely, prove that if ω ∈ σ(A), then it can be written in the above form.

4. Deduce that σ(A) is homeomorphic to U and that one can identify the Gelfand transform with a discrete
Fourier transform.

5. Let W be the set of continuous 2π-periodic functions whose Fourier series converges absolutely. Prove
that if f has no zeros, then 1/f ∈ W .

Exercise 2 – Commutant and multiplication operators. Let AX = {Mf ∈ B(L2(X)) : f ∈ L∞(X) } where
Mf denotes the multiplication operator by f(x).

1. If X ⊂ Rd be compact, Prove that AX is its own commutant in B(L2(X)).

2. Prove the same result if X = Rd.

3. Using the previous question, find the commutant of the set T2 = { τx ∈ B(L2(Rd)) : x ∈ Rd }, where
τxψ(y) = ψ(x− y) and of the set T2 ∪ ARd

4. Find the commutant of T1 = { τx ∈ B(L1(Rd)) : x ∈ Rd }.

Exercise 3 – Commutant and shift.

1. Find the commutant and the bicommutant of the set { Id, τl, τr } seen as a subset of B(ℓ2(N)), where τl

and τr are the left and right shift operators.

2. Find the commutant of the bilateral shift τ ∈ B(ℓ2(Z)) defined by (τu)n = un+1.

Exercise 4 – Closed ideals of C0(X). Let A = C0(X) for some compact Hausdorff space X .

1. Prove that for any proper ideal I ⊂ A there exists x ∈ X such that ∀f ∈ I, f(x) = 0.

2. Prove that I is maximal iff the above property is true for exactly one x ∈ X .

3. Show that there is a bĳection between the set of compact subsets of X and the set of closed ideals of
C0(X).
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TD 12 - Unbounded operators

Let H be a Hilbert space.

Exercise 1 – Commutant and multiplication operators. Let AX = {Mf ∈ B(L2(X)) : f ∈ L∞(X) } where
Mf denotes the multiplication operator by f(x).

1. If X ⊂ Rd be compact, Prove that AX is its own commutant in B(L2(X)).

2. Prove the same result if X = Rd.

3. Using the previous question, find the commutant of the set T2 = { τx ∈ B(L2(Rd)) : x ∈ Rd }, where
τxψ(y) = ψ(x− y) and of the set T2 ∪ ARd

4. Find the commutant of T1 = { τx ∈ B(L1(Rd)) : x ∈ Rd }.

Exercise 2 – Unbounded operators and domains.

1. Let A be the operator given by Aψ = (1 − ∆)ψ with domain D(A) = C∞
c (Rd). Prove that one cannot

extend it as a bounded operator on L2(Rd). What is the closure of A?

2. Consider the Banach space X = C0([0, 1]) endowed with the L∞ norm and the operators Amax, Amin,
Ak, and A00 all defined by the same action

Aφ = dφ
dx

but with different domainsD(Amax) = C1([0, 1]),D(Ak) = {φ ∈ C1([0, 1]) : φ(0) = kφ(1) },D(Amin) =
C∞

c (]0, 1[), and D(A00) = {φ ∈ C1([0, 1]) : φ(0) = φ(1) = 0 }. Study the injectivity, surjectivity and
closure of these operators.

Exercise 3 – A Non-closable operator. Let en be an orthonormal basis of H , D be the set of finite linear
combinations of the en and e0 ∈ H \D. Let A be an unbounded operator on H with domain D defined by

A(e0) = e0 and ∀k ∈ N∗, A(ek) = 0 .

Prove that the closure of the graph of A is not the graph of a linear operator, and so that A is not closable.

Exercise 4 – Some properties of unbounded operators. Let A be an injective unbounded operator on H with
domain D(A). Consider the following statements about S.

(a) A is closed.

(b) Ran(A) is dense.

(c) Ran(A) is closed.

(d) For some constant C > 0, ∀ψ ∈ D(A), ∥Aψ∥ ≥ C ∥ψ∥.

Prove that (a, b, c) implies (d), (b, c, d) implies (1), and (a) and (d) imply (c). Prove that if A verifies (a, b)
and B ∈ B(H), then A+B is closed.

Exercise 5 – Commutators.

1. Prove that there is no operators A,B ∈ B(H) such that [A,B] = Id.

2. Is it still true if A and B are allowed to be unbounded?
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