TD 1: Bounded operators

Notation: we use the notation $L^p(X) = L^p(X, \mathbb{C})$ for the Lebesgue space of complex valued functions, and $C^0(X) = C^0(X, \mathbb{C})$ for continuous functions. $\mathcal{L}(E, F)$ denotes the set of linear operators from E to F and $\mathcal{B}(E, F)$ the set of bounded operators. When E = F, we will just write $\mathcal{L}(E)$ or $\mathcal{B}(E)$. The space of power p summable sequences of complex number is denoted by ℓ^p .

Exercise 1 – *Operator norm and adjoint*. Let E, F and G be Banach spaces, $A \in \mathcal{L}(E, F)$ and $B \in \mathcal{L}(F, G)$.

- 1. Assume A and B are bounded. Prove that $BA \in \mathcal{B}(E,G)$ and $||BA|| \leq ||B|| ||A||$.
- 2. Prove that A is bounded if and only if it is continuous.
- 3. Using the Hahn–Banach theorem, prove that for any $x \in E$,

$$\left\|x\right\|_E = \sup_{\substack{y \in E' \\ \|y\| \leq 1}} \left|\langle x, y \rangle\right|.$$

4. If $A \in \mathcal{B}(E, F)$, prove that one can define its adjoint $A^* \in \mathcal{B}(F', E')$ by

$$\langle x, A^*y \rangle := \langle Ax, y \rangle.$$

Exercise 2 – *Almost invertible operators*. Give explicit examples of bounded operators A and B on ℓ^2 such that $AB = Id_{\ell^2}$ and BA is the projection onto a closed infinite-dimensional subspace of infinite codimension.

Exercise 3 – Weighted shift. We denote by $(e_n)_{n \in \mathbb{N}^*}$ the standard Hilbert basis of ℓ^2 and $e_0 = 0 \in \ell^2$. Let $a = (a_n)_{n \in \mathbb{N}} \in \ell^\infty$.

- 1. Show that there is a unique bounded operator A on ℓ^2 such that for any $n \in \mathbb{N}^*$, $Ae_n = a_n e_{n+1}$ and a unique bounded operator B on ℓ^2 such that for any $n \in \mathbb{N}^*$, $Be_n = a_n e_{n-1}$. Compute their operator norms and adjoint.
- 2. Find the eigenvalues of A and B, that is for $\lambda \in \mathbb{R}$, solve the equations $Au = \lambda u$ and $Bu = \lambda u$.
- 3. For the two operators above with $a_n = 1$ for all $n \in \mathbb{N}$, compute AB and BA and deduce that A is injective but not surjective, B is surjective but not injective.
- 4. Assuming that $a_n \to 0$ as $n \to \infty$, show that $\lim ||A^n||^{1/n} = 0$.

Exercise 4 – *Multiplication operators*. To any function $u \in L^{\infty}(\mathbb{R})$, we associate the operator M_u defined for $\psi \in L^2(\mathbb{R})$ by

$$M_u\psi(x) = u(x)\,\psi(x)\,.$$

- 1. Prove that u is a bounded operator and compute its operator norm and its adjoint.
- 2. Assume u is a real-valued strictly increasing function. Then prove that for any $\lambda \in \mathbb{C}$, the equation $M_u \psi = \lambda \psi$ has no solution.

Exercise 5 – *Differential operator*. Recall that for $n \in \mathbb{N}$, one can define $H^2(\mathbb{R}^d)$ as the space of functions such that the norm

$$\|u\|_{H^2} := \left(\|u\|_{L^2}^2 + \|\nabla^2 u\|_{L^2}^2\right)^{1/2}$$

is finite. Here $\nabla^2 u$ denotes the Hessian of u.

- 1. Prove that $A := 1 \Delta \in \mathcal{B}(H^2(\mathbb{R}^d), L^2(\mathbb{R}^d))$. Find its operator norm and its adjoint.
- 2. Prove that A is invertible.

Exercise 6 – *Integral operators*. Let $K \subseteq \mathbb{R}^d$ be compact and $a \in C^0(K^2)$ and define $A \in \mathcal{L}(L^1(K), C^0(K))$ for any $\psi \in L^1(K)$ by

$$A\psi(x) = \int_{K} a(x, y) \,\psi(y) \,\mathrm{d}y.$$

- 1. Prove that A is well-defined, $A \in \mathcal{B}(L^1(K), C^0(K))$.
- 2. Prove that the image of a bounded set of $C^{0}(K)$ by A is a compact set of $C^{0}(K)$.
- 3. Prove that if $a \in L^2(K)$ with K possibly unbounded, then the above expression also defines an operator $A \in \mathcal{B}(L^2(K))$.

TD 2: Banach algebra and spectrum

Exercise 1 – Banach Algebra.

- 1. If E is a Banach space, prove that $\mathcal{B}(E)$ is a Banach algebra.
- 2. Let A be a K-algebra that is also a Banach space for some norm $N : A \to \mathbb{R}_+$. Prove that if the multiplication is continuous, then there exists a norm $\|\cdot\|$ such that A is a Banach algebra.
- 3. Let $\mathcal{F}(L^1) = \{ f \in \mathcal{D}'(\mathbb{R}) : \hat{f} \in L^1(\mathbb{R}) \}$. Is $\mathcal{F}(L^1)$ a Banach algebra for the usual multiplication of functions? Same question with $\mathcal{F}(\mathcal{M})$ where \mathcal{M} denotes the set of finite measures on \mathbb{R} .

Exercise 2 – *Inversion and connected sets*. Let *A* be a Banach algebra.

- 1. Prove that A^{\times} is an open set and a topological group.
- 2. Show that for every element $x \in A$ satisfying ||x|| < 1, there is a continuous function $f : [0,1] \to A^{\times}$ such that f(0) = 1 and $f(1) = (1-x)^{-1}$.
- 3. Show that for every element $x \in A^{\times}$, there is an $\varepsilon > 0$ with the following property: for every element $y \in A^{\times}$ satisfying $||y x|| \le \varepsilon$, there is an arc in A^{\times} connecting y to x.
- 4. Prove that an open subgroup of A^{\times} is always closed.
- 5. Let G be the set of all finite products of elements of A^{\times} of the form 1 x or $(1 x)^{-1}$, where $x \in A$ satisfies ||x|| < 1. Show that G is the connected component of 1 in A^{\times} .

Exercise 3 – *Spectrum of functions*. Let X be a compact Hausdorff space and let $A = C^0(X)$ be the Banach algebra of all complex-valued continuous functions on X. If $f \in C^0(X)$, what is its spectrum?

Exercise 4 – *Multiplication operator*. Let $\Omega \subseteq \mathbb{R}$ be a compact set and M_x be the operator defined for functions $\psi \in L^2(\Omega)$ by

$$M_x\psi(x) = x\,\psi(x)\,.$$

Find the spectrum of M_x .

Exercise 5 – Volterra equation of the second kind. Let $k \in C^0([0,1]^2)$ and define $K \in \mathcal{B}(C^0([0,1]))$ for any $f \in C^0([0,1])$ by

$$Kf(x) = \int_0^x k(x, y) f(y) \,\mathrm{d}y.$$

1. Prove that for any $n \in \mathbb{N}$, $K^n \in \mathcal{B}(C^0(\Omega))$ and there exists a constant c > 0 such that for any $n \in \mathbb{N}$,

$$\|K^n\| \le \frac{c^n}{n!} \, .$$

2. Show that for every complex number $\lambda \neq 0$ and every $g \in C^0([0,1])$, the equation $Kf = \lambda f + g$ has a unique solution $f \in C^0([0,1])$.

Exercise 6 – *Differential operator*. What is the spectrum of the operator $(1 - \Delta)^{-1}$ seen as a bounded operator on $L^2(\mathbb{R}^d)$?

TD 3: Spectral radius and decomposition of the spectrum

Exercise 1 – Volterra equation of the second kind. Let $k \in C^0([0,1]^2)$ and define $K \in \mathcal{B}(C^0([0,1]))$ for any $f \in C^0([0,1])$ by

$$Kf(x) = \int_0^x k(x, y) f(y) \,\mathrm{d}y.$$

1. Prove that for any $n \in \mathbb{N}$, $K^n \in \mathcal{B}(C^0(\Omega))$ and there exists a constant c > 0 such that for any $n \in \mathbb{N}$,

$$\|K^n\| \le \frac{c^n}{n!} \,.$$

- 2. Deduce that the spectral radius is different from the operator norm.
- 3. Show that for every complex number $\lambda \neq 0$ and every $g \in C^0([0,1])$, the equation $Kf = \lambda f + g$ has a unique solution $f \in C^0([0,1])$.

Exercise 2 – *Spectral radius inequalities*. Let A be a complex Banach algebra and $a \in A$.

1. Prove that

$$r(a) \le \inf_{b \in A^{\times}} \|b^{-1}ab\|.$$

2. Assume a and b have their spectral radius equal to their operator norm. Prove that

$$r(a+b) \le r(a) + r(b).$$

Exercise 3 – *Nilpotent operators*. Let A be a complex Banach algebra and a and b be two commuting nilpotent. Prove that a + b is nilpotent. Is it still true if a and b do not commute?

Exercise 4 – *Shift operator*. Let $\tau_l, \tau_r \in \mathcal{B}(\ell^2)$ be defined by

$$\tau_l(x_1,\ldots,x_n,\ldots) = (x_2,\ldots,x_n,\ldots)$$

$$\tau_r(x_1,\ldots,x_n,\ldots) = (0,x_1,x_2,\ldots,x_n,\ldots).$$

- 1. What is their adjoint and spectral radius?
- 2. Compute the different parts of the spectrum σ_p , σ_a and σ_r of τ_l .
- 3. Compute the different parts of the spectrum σ_p , σ_a and σ_r of τ_r .

Exercise 5 – *Multiplication operator*. Let (X, μ) be a probability space, $f \in L^{\infty}(X, \mu)$ and M_f be the operator defined for functions $\psi \in L^2(X, \mu)$ by

$$M_f \psi(x) = f(x) \,\psi(x) \,.$$

Prove that

• $\sigma_p(M_f) = \{ z \in \mathbb{C} : \mu(f^{-1}(\{ z \})) > 0 \}$ • $\sigma_a(M_f) = \{ z \in \mathbb{C} : \forall \varepsilon > 0, \mu(f^{-1}(\{ B_{\varepsilon}(z) \})) > 0 \}$ • $\sigma_r(M_f) = \emptyset$.

Exercise 6 – *Differential operator*. What are the different parts of the spectrum of the operator $(1 - \Delta)^{-1}$ seen as a bounded operator on $L^2(\mathbb{R}^d)$?

TD04

TD 4: Normal operators, adjoints, and inequalities

We denote by H a complex Hilbert space.

Exercise 1 – *Adjoint*. Let * denote the adjoint operation on $\mathcal{B}(H)$.

- 1. Prove that * is an involution of the complex Banach algebra $\mathcal{B}(H)$ (that is for any $A, B \in \mathcal{B}(H)$, $(AB)^* = B^*A^*, A^{**} = A$, and $(aA + bB)^* = \overline{a}A^* + \overline{b}B^*$ for any $(a, b) \in \mathbb{C}^2$) such that for any $A \in \mathcal{B}(A)$, invertible $(A^{-1})^* = (A^*)^{-1}$.
- 2. Prove that * is continuous for the operator norm topology and the *weak operator topology* (that is $\forall x \in H$, $A_n x \to A x$ weakly implies $A_n^* x \to A^* x$ weakly) but not for the *strong operator topology* (that is $\forall x \in H$, $A_n x \to A x$ strongly does not imply $A_n^* x \to A^* x$ strongly).
- 3. Give an example of a normal operator different from 1 and a non-normal operator.

Exercise 2 – *Quadratic form*. To every operator $A \in \mathcal{B}(H)$, one can associate a quadratic form $q_A : H \to \mathbb{C}$ defined by $q_A(x) = \langle Ax, x \rangle$. The numerical radius of A is defined by

$$w(A) = \sup_{x \in H, |x|=1} |q_A(x)|.$$

- 1. Show that A is self-adjoint if and only if q_A is real-valued.
- 2. Show that $w(A) \leq ||A|| \leq 2 w(A)$.
- 3. Show that $q_A = q_B$ if and only if A = B.

Exercise 3 – *Spectral Radius of normal operators*. Let $A \in \mathcal{B}(H)$.

- 1. Prove that $||A^*A|| = ||A||^2$.
- 2. Prove that if A is normal, then ||A|| = r(A).

Exercise 4 – *Square root*. Let $A \in \mathcal{B}(H)$ verify $A \ge 0$.

- 1. Prove that there exists an operator $B \in \mathcal{B}(H)$ such that $B \ge 0$, $B^2 = A$ and B commutes with every operator that commutes with A.
- 2. Prove that there exists a unique operator $B \in \mathcal{B}(H)$ such that $B \ge 0, B^2 = A$.

We denote by \sqrt{A} the operator B defined in this way.

Exercise 5 – *Inequalities for normal operators*. If $A \in \mathcal{B}(H)$, we define $|A| := \sqrt{A^*A}$. Let A and B be two normal operators on $\mathcal{B}(H)$.

- 1. Prove that for any $(m, n, p, q) \in \mathbb{N}^4$, $||A^{m+n}B^{p+q}|| \le ||A|^m |B|^p || \, ||A|^n |B|^q ||$.
- 2. Prove that for any integers $k \le n$, $||A^k B^k|| \le |||A|^n |B|^n ||^{k/n}$. *Hint: start with the case where* k and n are powers of 2.
- 3. If A is invertible and $0 \le A \le B$ (meaning $B A \ge 0$) prove that $\sqrt{A} \le \sqrt{B}$.
- 4. Remove the hypothesis of invertibility of A.

TD 5: Compact operators

Let E, F and G be Banach spaces and H be an Hilbert space. We denote by $\mathcal{K}(E, F)$ the space of compact operators from E to F.

- **Exercise 1** *Properties of compact operators.* 1. Let $A \in \mathcal{L}(E, F)$. Prove that if A compact, then A is bounded, and that the converse is true if E or F is finite dimensional.
 - 2. Let $A \in \mathcal{B}(F,G)$ and $B \in \mathcal{B}(E,F)$. Prove that AB is compact if A or B is compact. Is the converse true?
 - Prove that if K ∈ K(E, F), then it maps weakly converging sequences to strongly convergent ones, that is if (x_n)_{n∈ℕ} is a sequence converging weakly in E, then Kx_n converges strongly in F.
 - 4. If E is reflexive, prove that $K \in \mathcal{K}(E, F)$ iff it maps weakly converging sequences to strongly convergent ones.
 - 5. Let *H* be an infinite dimensional Hilbert space, and $K \in \mathcal{B}(H)$ be a compact operator. Show that for any orthonormal family $(e_n)_{n \in \mathbb{N}}$ of vectors of *H*,

$$\lim_{n \to \infty} \|Ke_n\| = 0.$$

6. Let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal basis of H, $Q_n := 1 - P_n$ where P_n is the orthogonal projection on $\operatorname{span}(e_1, \ldots, e_n)$ and $A \in \mathcal{B}(H)$. Prove that

A is compact
$$\iff \|Q_n A Q_n\| \xrightarrow[n \to \infty]{} 0.$$

Exercise 2 – *Hilbert–Schmidt integral operators.* Let $H = L^2(\mathbb{R}^d, \mathbb{C})$ and $k \in L^2(\mathbb{R}^{2d}, \mathbb{C})$ and define $K \in \mathcal{B}(L^2)$ by

$$\forall \psi \in H, \ K\psi(x) = \int_{\mathbb{R}^d} k(x, y) \, \psi(y) \, \mathrm{d}y \, .$$

The function k is called the integral kernel of K.

- 1. Prove that $||K|| \leq ||k||_{L^2}$ and that the adjoint of K is an integral operator with integral kernel $\overline{k(x,y)}$.
- 2. Prove that *K* is a compact operator. *Hint: use the fact that* $L^2(\mathbb{R}^d, \mathbb{C})$ *is a separable Hilbert space and the compactness of finite rank operators.*

Exercise 3 – Let $A = u(x) (1 - \Delta)^{-1} \in \mathcal{L}(L^2(\mathbb{R}))$ with $u \in L^2(\mathbb{R})$. Prove that A is compact.

Exercise 4 – Let $A \in \mathcal{B}(E, F)$ and B_E denote the unit ball of E.

- 1. Prove that if E is reflexive, then $A(B_E)$ is closed.
- 2. Prove that if E is reflexive and A is compact, then $A(B_E)$ is compact.
- 3. Let $E = F = C^0[0, 1]$ and $Au(x) = \int_0^x u(t) dt$. Prove that A is compact but $A(B_E)$ is not closed.

Exercise 5 – Let $1 \le p \le q \le \infty$ and $\Omega \subset \mathbb{R}^d$ be a bounded open set. Prove that the injection $L^q(\Omega) \to L^p(\Omega)$ is bounded but not compact. *Hint: strong oscillations* ...

TD 6 - Compact and Hilbert–Schmidt operators

Let H be a complex Hilbert space. We denote by $\mathcal{L}^2(H)$ the set of Hilbert–Schmidt operators on H.

Exercise 1 – Prove that the space $\mathcal{L}^2(H)$ is a Hilbert space.

Exercise 2 – *Hilbert–Schmidt integral operators*. Let $H = L^2(\mathbb{R}^d, \mathbb{C})$ and $k \in L^2(\mathbb{R}^{2d}, \mathbb{C})$ and define $K \in \mathcal{B}(H)$ by

$$\forall \psi \in H, \ K\psi(x) = \int_{\mathbb{R}^d} k(x, y) \, \psi(y) \, \mathrm{d}y \, .$$

The function k is called the integral kernel of K.

- 1. Prove that $||K|| \leq ||k||_{L^2}$ and that the adjoint of K is an integral operator with integral kernel $\overline{k(x,y)}$.
- 2. Prove that $K \in \mathcal{L}^2(H)$.
- 3. Conversely, prove that if $A \in \mathcal{L}^2(H)$ then A is a Hilbert–Schmidt integral operator.

Exercise 3 – *Your favorite operator.* Let $A = u(x) (1 - \Delta)^{-1} \in \mathcal{L}(H)$ with $u \in L^2(\mathbb{R}^d)$ and $H = L^2(\mathbb{R}^d, \mathbb{C})$.

- 1. If d = 1, prove that A is a Hilbert–Schmidt operator.
- 2. If $d \ge 1$ and $u \in (L^2 \cap L^\infty)(\mathbb{R}^d)$, prove that $A \in \mathcal{K}(H)$.

Exercise 4 – Let $T \in \mathcal{B}(H)$.

- 1. Prove that T is compact iff T^*T is compact.
- 2. Let $n \in \mathbb{N}^*$ and assume T is normal. Prove that T is compact iff T^n is compact. Is is still true if T is not normal?

Exercise 5 – Let $B \in \mathcal{L}^2(H)$ be self-adjoint and $A \in \mathcal{B}(H)$.

1. Prove that

$$\left\| |AB|^2 \right\|_2 \leq \left\| |A|^2 \, B^2 \right\|_2$$

2. Prove that for any $n \in \mathbb{N}$ which is a power of 2,

$$|||AB|^n||_2 \le |||A|^n B^n||_2.$$

TD 6 - Compact and trace class operators

Let H be a complex Hilbert space. We denote by $\mathcal{L}^2(H)$ the set of Hilbert–Schmidt operators on H.

Exercise 1 – Let $T \in \mathcal{B}(H)$.

- 1. Prove that T is compact iff T^*T is compact.
- 2. Let $n \in \mathbb{N}^*$ and assume T is normal. Prove that T is compact iff T^n is compact. Is is still true if T is not normal?

Exercise 2 – *Trace of positive operators.* If $(e_n)_{n \in \mathbb{N}}$ is an Hilbert basis of H and $A \in \mathcal{B}(H)$ is a positive operator, one can define its trace $Tr(A) \in [0, +\infty]$ as

$$\operatorname{Tr}(A) := \sum_{n=1}^{\infty} \langle Ae_n, e_n \rangle.$$
(1)

- 1. Prove that the above definition is independent of the basis.
- 2. Prove that for any $T \in \mathcal{B}(H)$, $\operatorname{Tr}(T^*T) = \operatorname{Tr}(TT^*)$ and this quantity is finite iff $T \in \mathcal{L}^2(H)$.

Exercise 3 – *Cyclicity of the trace.* If $A \in \mathcal{B}(H)$, then we define the set of trace class operators as

 $\mathcal{L}^{1}(H) = \operatorname{span} \left\{ A \in \mathcal{B}(H) : A \ge 0 \text{ and } \operatorname{Tr}(A) < \infty \right\}.$

- 1. Prove that any $A \in \mathcal{L}^1(H)$ can be written as a linear combination of four positive operators with finite trace.
- 2. Prove that if $A \in \mathcal{L}^1(H)$, then the series (1) makes sense and is absolutely convergent. It defines the trace on $\mathcal{L}^1(H)$.
- 3. Let $A, B \in \mathcal{L}^2(H)$. Prove that $AB \in \mathcal{L}^1(H)$ and $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.
- 4. Let $A \in \mathcal{K}(H)$ be normal and $B \in \mathcal{B}(H)$. Prove that $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$ remains true if $AB \in \mathcal{L}^1(H)$. Prove that this is in particular the case if $A \in \mathcal{L}^1(H)$.
- 5. If $A, B \in \mathcal{B}(H)$, is it always true that Tr([A, B]) = 0?

Exercise 4 – *Trace of normal operators.* Let $A \in \mathcal{K}(H)$ be normal.

1. Prove that $A \in \mathcal{L}^2(H)$ iff the sequence of its eigenvalues $(\lambda_j(A))_{j \in \mathbb{N}}$ (counted with multiplicity) is in ℓ^2 , and that in this case

$$||A||_2^2 = \operatorname{Tr}(|A|^2) = \sum_{j \in \mathbb{N}} |\lambda_j|^2.$$

2. Prove that $A \in \mathcal{L}^1(H)$ iff $(\lambda_i(A))_{i \in \mathbb{N}} \in \ell^1$, and that in this case

$$\operatorname{Tr}(A) = \sum_{j \in \mathbb{N}} \lambda_j(A)$$

3. Let $A \in \mathcal{L}^1(L^2(\mathbb{R}^d))$ be a normal integral operator with kernel $A(x, y) \in C^0(\mathbb{R}^{2d})$. Prove that $A(x, x) \in L^1(\mathbb{R}^d)$ and

$$\operatorname{Tr}(A) = \int_{\mathbb{R}^d} A(x, x) \, \mathrm{d}x.$$

Conversely, if $A(x, y) \in C^0(\mathbb{R}^{2d})$ is such that $A \ge 0$ and $A(x, x) \in L^1(\mathbb{R}^d)$, prove that $A \in \mathcal{L}^1(L^2(\mathbb{R}^d))$.

TD 8 - Polar decomposition and functional Calculus

Let H be a complex Hilbert space. We denote by $\mathcal{L}^2(H)$ the set of Hilbert–Schmidt operators on H and by $\mathcal{L}^1(H)$ the set of trace class operators.

Exercise 1 – *Polar decomposition.* Recall that if $A \in \mathcal{B}(H)$, then one can define $|A| := \sqrt{A^*A}$.

- 1. Prove that it is not always possible to write A = U |A| for some unitary operator U.
- 2. Prove that there is a unique operator $U \in \mathcal{B}(H)$ such that A = U |A| and ker $U = \ker A$, and that it is an isometry from $(\ker U)^{\perp}$ to ran U. Define U on ran |A| first.
- 3. Prove that U^* is an isometry from ran U to $(\ker U)^{\perp}$ and $|A| = U^* A$.

Exercise 2 – *Trace class operators.* 1. Prove that

$$\mathcal{L}^{1}(H) = \{ A \in \mathcal{B}(H) : \operatorname{Tr}(|A|) < \infty \}.$$

2. Prove that if $A \in \mathcal{B}(H)$ and $B \in \mathcal{L}^1(H)$, then

$$|\operatorname{Tr}(AB)| \le ||A|| \operatorname{Tr}(|B|).$$

3. Prove that $||A||_{\mathcal{L}^1} := \operatorname{Tr}(|A|)$ is a norm on \mathcal{L}^1 .

Exercise 3 – *Compact operators and functional calculus.* Let $A \in \mathcal{K}(H)$ be self-adjoint.

- 1. Prove that if $f \in C^0(\sigma(A))$ is such that f(0) = 0, then f(A) is compact.
- 2. Prove that in this case

$$f(A) = \sum_{\lambda \in \sigma(A)} f(\lambda) P_{\lambda}.$$

Exercise 4 – *Singular value decomposition*.

1. Prove that for any compact operator A, there exists a non-increasing sequence of positive numbers $(\mu_j(A))_{j\in\mathbb{N}}$ and two orthonormal sets $(\phi_j)_{j\in\mathbb{N}}$ and $(\psi_j)_{j\in\mathbb{N}}$ such that

$$A = \sum_{j \in \mathbb{N}} \mu_j(A) \langle \phi_j, \cdot \rangle \psi_j.$$

- 2. Prove that the $\mu_j(A)$ are unique and deduce that $\mu_j(A) = \mu_j(A^*)$.
- 3. if A is a compact operator, prove that

$$\operatorname{Tr}(|A|^p) = \sum_{j \in \mathbb{N}} \mu_j(A)^p.$$

Exercise 5 – Let A, B be two positive operators such that A^p and B^q are trace class, with $1 < q \le 2 \le p < \infty$ and p = q'.

1. Show that if ψ_n is an orthonormal basis of eigenvectors of B associated to the eigenvalues λ_n , then

$$\langle |AB| \psi_n, \psi_n \rangle \leq \lambda_n \langle A^p \psi_n, \psi_n \rangle^{1/p}.$$

2. Prove that

$$\operatorname{Tr}(|AB|) \le \operatorname{Tr}(A^p)^{1/p} \operatorname{Tr}(B^q)^{1/q}.$$

TD 9 - Functional calculus

Let H be a complex Hilbert space.

Exercise 1 – *Compact operators and functional calculus.* Let $A \in \mathcal{K}(H)$ be self-adjoint.

- 1. Prove that if $f \in C^0(\sigma(A))$ is such that f(0) = 0, then f(A) is compact.
- 2. Prove that in this case

$$f(A) = \sum_{\lambda \in \sigma(A)} f(\lambda) P_{\lambda}.$$

Exercise 2 – Decomposition of compact operators.

1. Prove that for any compact operator A, there exists a non-increasing sequence of positive numbers $(\mu_j(A))_{j\in\mathbb{N}}$ and two orthonormal sets $(\phi_j)_{j\in\mathbb{N}}$ and $(\psi_j)_{j\in\mathbb{N}}$ such that

$$A = \sum_{j \in \mathbb{N}} \mu_j(A) \langle \phi_j, \cdot \rangle \psi_j.$$

- 2. Prove that the $\mu_j(A)$ are unique and deduce that $\mu_j(A) = \mu_j(A^*)$.
- 3. if A is a compact operator, prove that

$$\operatorname{Tr}(|A|^p) = \sum_{j \in \mathbb{N}} \mu_j(A)^p.$$

Exercise 3 – Functional calculus of bounded operators.

- 1. Prove that two bounded normal operators commute iff their spectral projections commute.
- 2. Let $f \in C^0(\mathbb{C})$ and $(A_n)_{n \in \mathbb{N}}$ be a sequence of normal bounded operators that converges in norm to an operator A. Show that $f(A_n)$ converges in norm to f(A).

Exercise 4 – *Schur Lemma.* Let $S \subseteq \mathcal{B}(H)$ be such that $S^* = S$. We want to prove that the two following assertions are equivalent.

(i) The only closed subspaces invariants by S are $\{0\}$ and H.

(ii) If $A \in \mathcal{B}(H)$ is such that $\forall B \in S, AB = BA$, then $A \in \mathbb{C}$ Id.

- 1. Prove that (ii) implies (i).
- 2. Assume (i). Prove by contradiction that (ii) holds if A is self-adjoint.
- 3. Prove that (i) and (ii) are equivalent.

Exercise 5 – *Von Neumann Ergodic Theorem.* Let U be a unitary operator on H (i.e. a normal isometry) and P be the orthogonal projection on ker(1 - U). Prove that for any $\psi \in H$,

$$\frac{1}{n}\sum_{k=0}^{n-1}U^k\psi \underset{n \to \infty}{\to} P\psi\,.$$

Let (Ω, μ) a probability space and T a measure preserving bijection on Ω such that for any $E \subseteq \Omega$, $\mu(E \bigtriangleup T(E)) = 0 \implies \mu(E) \in \{0, 1\}$. Then prove that for any $f \in L^2(\Omega)$,

$$\frac{1}{n}\sum_{k=0}^{n-1}f\circ T^k \underset{n\to\infty}{\to} \int f(x)\,\mu(\mathrm{d} x) \quad \text{ in } L^2(\Omega)\,.$$

TD 10 - Functional calculus and Gelfand transform

Let H be a complex Hilbert space.

Exercise 1 – *Schur Lemma.* Let $S \subseteq \mathcal{B}(H)$ be such that $S^* = S$. We want to prove that the two following assertions are equivalent.

- (i) The only closed subspaces invariants by S are $\{0\}$ and H.
- (ii) If $A \in \mathcal{B}(H)$ is such that $\forall B \in S, AB = BA$, then $A \in \mathbb{C}$ Id.
- 1. Prove that (ii) implies (i).
- 2. Assume (i). Prove by contradiction that (ii) holds if A is self-adjoint.
- 3. Prove that (i) and (ii) are equivalent.

Exercise 2 – *Von Neumann Ergodic Theorem.* Let U be a unitary operator on H (i.e. a normal isometry) and P be the orthogonal projection on ker(1 - U). Prove that for any $\psi \in H$,

$$\frac{1}{n} \sum_{k=0}^{n-1} U^k \psi \xrightarrow[n \to \infty]{} P \psi \,.$$

Let (Ω, μ) a probability space and T a measure preserving bijection on Ω such that for any $E \subseteq \Omega$, $\mu(E \triangle T(E)) = 0 \implies \mu(E) \in \{0, 1\}$. Then prove that for any $f \in L^2(\Omega)$,

$$\frac{1}{n}\sum_{k=0}^{n-1}f\circ T^k \xrightarrow[n\to\infty]{} \int f(x)\,\mu(\mathrm{d} x) \quad \text{ in } L^2(\Omega)\,.$$

Exercise 3 – *Wiener Algebra*. Let $\mathcal{A} = \ell^1(\mathbb{Z})$ with multiplication given by the convolution, that is $(a * b)_n = \sum_{k \in \mathbb{Z}} a_k b_{n-k}$. For any $n \in \mathbb{Z}$, we denote by δ_n the sequence such that for $k \in \mathbb{Z}$, $(\delta_n)_k = \delta_{n,k}$ is 1 if k = n and 0 else.

- 1. Prove that \mathcal{A} is a Banach algebra. What is its unit sequence? If $n, m \in \mathbb{Z}$, what is the action of the operator $\delta_n * \cdot$, and what is $\delta_n * \delta_m$?
- 2. Prove that for any $\lambda \in \mathcal{U} := \{ \lambda \in \mathbb{C} : |\lambda| = 1 \},\$

$$\omega_{\lambda} := \left(a \mapsto \sum_{n \in \mathbb{Z}} a_n \, \lambda^n \right) \in \sigma(\mathcal{A}) \,.$$

- 3. Conversely, prove that if $\omega \in \sigma(A)$, then it can be written in the above form.
- 4. Deduce that $\sigma(A)$ is homeomorphic to \mathcal{U} and that one can identify the Gelfand transform with a discrete Fourier transform.
- 5. Let W be the set of continuous 2π -periodic functions whose Fourier series converges absolutely. Prove that if f has no zeros, then $1/f \in W$.

Exercise 4 – Let $\mathcal{A} = C^0(X)$ for some compact Hausdorff space X.

- 1. Prove that for any proper ideal $\mathcal{I} \subset \mathcal{A}$ there exists $x \in X$ such that $\forall f \in \mathcal{I}, f(x) = 0$.
- 2. Prove that \mathcal{I} is maximal iff the above property is true for exactly one $x \in X$.
- 3. Show that there is a bijection between the set of compact subsets of X and the set of closed ideals of $C^0(X)$.

TD 11 - Gelfand transform and Commutant

Let H be a complex Hilbert space.

Exercise 1 – *Wiener Algebra*. Let $\mathcal{A} = \ell^1(\mathbb{Z})$ with multiplication given by the convolution, that is $(a * b)_n = \sum_{k \in \mathbb{Z}} a_k b_{n-k}$. For any $n \in \mathbb{Z}$, we denote by δ_n the sequence such that for $k \in \mathbb{Z}$, $(\delta_n)_k = \delta_{n,k}$ is 1 if k = n and 0 else.

- 1. Prove that \mathcal{A} is a Banach algebra. What is its unit sequence? If $n, m \in \mathbb{Z}$, what is the action of the operator $\delta_n * \cdot$, and what is $\delta_n * \delta_m$?
- 2. Prove that for any $\lambda \in \mathcal{U} := \{ \lambda \in \mathbb{C} : |\lambda| = 1 \},\$

$$\omega_{\lambda} := \left(a \mapsto \sum_{n \in \mathbb{Z}} a_n \, \lambda^n \right) \in \sigma(\mathcal{A}) \,.$$

- 3. Conversely, prove that if $\omega \in \sigma(\mathcal{A})$, then it can be written in the above form.
- 4. Deduce that $\sigma(A)$ is homeomorphic to U and that one can identify the Gelfand transform with a discrete Fourier transform.
- 5. Let W be the set of continuous 2π -periodic functions whose Fourier series converges absolutely. Prove that if f has no zeros, then $1/f \in W$.

Exercise 2 – *Commutant and multiplication operators.* Let $\mathcal{A}_X = \{ M_f \in \mathcal{B}(L^2(X)) : f \in L^{\infty}(X) \}$ where M_f denotes the multiplication operator by f(x).

- 1. If $X \subset \mathbb{R}^d$ be compact, Prove that \mathcal{A}_X is its own commutant in $\mathcal{B}(L^2(X))$.
- 2. Prove the same result if $X = \mathbb{R}^d$.
- 3. Using the previous question, find the commutant of the set $\mathcal{T}_2 = \{ \tau_x \in \mathcal{B}(L^2(\mathbb{R}^d)) : x \in \mathbb{R}^d \}$, where $\tau_x \psi(y) = \psi(x y)$ and of the set $\mathcal{T}_2 \cup \mathcal{A}_{\mathbb{R}^d}$
- 4. Find the commutant of $\mathcal{T}_1 = \{ \tau_x \in \mathcal{B}(L^1(\mathbb{R}^d)) : x \in \mathbb{R}^d \}.$

Exercise 3 – Commutant and shift.

- 1. Find the commutant and the bicommutant of the set $\{ Id, \tau_l, \tau_r \}$ seen as a subset of $\mathcal{B}(\ell^2(\mathbb{N}))$, where τ_l and τ_r are the left and right shift operators.
- 2. Find the commutant of the bilateral shift $\tau \in \mathcal{B}(\ell^2(\mathbb{Z}))$ defined by $(\tau u)_n = u_{n+1}$.

Exercise 4 – *Closed ideals of* $C^0(X)$. Let $\mathcal{A} = C^0(X)$ for some compact Hausdorff space X.

- 1. Prove that for any proper ideal $\mathcal{I} \subset \mathcal{A}$ there exists $x \in X$ such that $\forall f \in \mathcal{I}, f(x) = 0$.
- 2. Prove that \mathcal{I} is maximal iff the above property is true for exactly one $x \in X$.
- 3. Show that there is a bijection between the set of compact subsets of X and the set of closed ideals of $C^0(X)$.

TD 12 - Unbounded operators

Let H be a Hilbert space.

Exercise 1 – *Commutant and multiplication operators.* Let $\mathcal{A}_X = \{ M_f \in \mathcal{B}(L^2(X)) : f \in L^{\infty}(X) \}$ where M_f denotes the multiplication operator by f(x).

- 1. If $X \subset \mathbb{R}^d$ be compact, Prove that \mathcal{A}_X is its own commutant in $\mathcal{B}(L^2(X))$.
- 2. Prove the same result if $X = \mathbb{R}^d$.
- 3. Using the previous question, find the commutant of the set $\mathcal{T}_2 = \{ \tau_x \in \mathcal{B}(L^2(\mathbb{R}^d)) : x \in \mathbb{R}^d \}$, where $\tau_x \psi(y) = \psi(x y)$ and of the set $\mathcal{T}_2 \cup \mathcal{A}_{\mathbb{R}^d}$
- 4. Find the commutant of $\mathcal{T}_1 = \{ \tau_x \in \mathcal{B}(L^1(\mathbb{R}^d)) : x \in \mathbb{R}^d \}.$

Exercise 2 – Unbounded operators and domains.

- 1. Let A be the operator given by $A\psi = (1 \Delta)\psi$ with domain $D(A) = C_c^{\infty}(\mathbb{R}^d)$. Prove that one cannot extend it as a bounded operator on $L^2(\mathbb{R}^d)$. What is the closure of A?
- 2. Consider the Banach space $X = C^0([0, 1])$ endowed with the L^{∞} norm and the operators A_{max} , A_{min} , A_k , and A_{00} all defined by the same action

$$A\varphi = \frac{\mathrm{d}\varphi}{\mathrm{d}x}$$

but with different domains $D(A_{\max}) = C^1([0,1]), D(A_k) = \{\varphi \in C^1([0,1]) : \varphi(0) = k\varphi(1)\}, D(A_{\min}) = C_c^{\infty}(]0,1[)$, and $D(A_{00}) = \{\varphi \in C^1([0,1]) : \varphi(0) = \varphi(1) = 0\}$. Study the injectivity, surjectivity and closure of these operators.

Exercise 3 – *A Non-closable operator.* Let e_n be an orthonormal basis of H, D be the set of finite linear combinations of the e_n and $e_0 \in H \setminus D$. Let A be an unbounded operator on H with domain D defined by

$$A(e_0) = e_0$$
 and $\forall k \in \mathbb{N}^*, A(e_k) = 0$.

Prove that the closure of the graph of A is not the graph of a linear operator, and so that A is not closable.

Exercise 4 – *Some properties of unbounded operators.* Let A be an injective unbounded operator on H with domain D(A). Consider the following statements about S.

- (a) A is closed.
- (b) $\operatorname{Ran}(A)$ is dense.
- (c) $\operatorname{Ran}(A)$ is closed.
- (d) For some constant C > 0, $\forall \psi \in D(A)$, $||A\psi|| \ge C ||\psi||$.

Prove that (a, b, c) implies (d), (b, c, d) implies (1), and (a) and (d) imply (c). Prove that if A verifies (a, b) and $B \in \mathcal{B}(H)$, then A + B is closed.

Exercise 5 – Commutators.

- 1. Prove that there is no operators $A, B \in \mathcal{B}(H)$ such that [A, B] = Id.
- 2. Is it still true if A and B are allowed to be unbounded?